

Barna Saha AT&T Lab-Research

What is required !

- Ideally ~10 projects
 - Make a group of 3 with matching interest
 - Else share your interest in the blog and I will create the groups
- How to select project
 - Gloss over bunch of papers on topics that interest you
 - THINK
 - Is there anything to improve upon ?
 - Can there be an interesting variant ?
 - Can we solve this problem on a different model ?
 - Can there be an interesting application where the work can be applied ? What changes are required ?
- START EARLY

Timeline

- October 3rd: Name of 6 papers (2 each)
 - Allocate time with me during office hours to describe the papers
 - Each group should allocate one hour time in total
 - All groups must meet me before November 3rd.
- October 17th: Two page project proposal (all submissions in pdf format written in latex)
 - Discuss what you want to work on your project much before this deadline, so that I don't have to disapprove any of your project.
- November 14th: One page progress report
- December 5th: Project write-up due
- 20-30 minutes in class presentation (Nov 21st, Dec 5th)
- DEADLINES ARE FIRM—LATE SUBMISSIONS WILL BE HIGHLY PENALIZED.

Scribe

- 21 lectures, 29 registered students !
 - 4 problem sets
 - 2 students each will write the solution
 - Solution will be discussed in class/ office hour (depending on course progress)
 - Students should try to solve the problem set and participate in class discussion on the problem sets.
- SCRIBE DUE BY FOLLOWING MONDAY MIDNIGHT
 - LATE SUBMISSION
 - Tuesday-Before the class: 50% penalized
 - Afterwards: 100% penalized

- Improve Bounds of a problem
 - Example:
 - An Optimal Algorithm for the Distinct Elements Problem, Kane, Nelson, Woodruff, PODS'10
 - Optimal space and update time
 - Improvement
 - Space
 - Time
 - Number of Rounds/ Passes
 - Approximation Factor
 - May be different norm

- Find Interesting Variant, Develop Algorithms and Analyze
 - Example "Finding Interesting Correlations with Conditional Heavy Hitters", Mirylenka, Palpanas, Cormode, Srivastava, ICDE'12
 - Conditional Heavy Hitter: conditionally frequent: when a particular item is frequent within the context of its parent item
 - Find popular destination under source—"locally popular"
 - Think
 - Are there other estimates where conditioning may help?
 - Distributed processing ?

- Consider Different Models, Design Algorithm, Analysis
 - Traditional \rightarrow streaming, map reduce
 - Can we take the help of crowd ?
 - Can this problem formulation be useful for image/text analysis?

- Find Interesting Application, Design Algorithms, Analyze
 - Example: Real Time Story Identification (best paper on vldb 2012)
- Stories can be identified via groups of tightly-coupled real-world entities, namely the people, locations, products, etc., that are involved in the story
- Is dense subgraph sufficient ?
- What guarantees are provided ?
- Does other models make sense ?
- How does it compare with other papers?

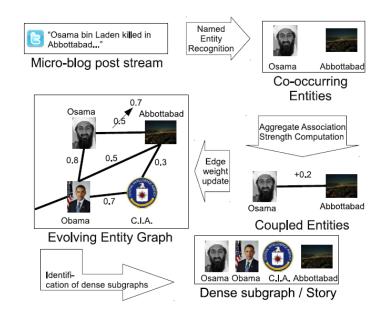


Figure 1: Real-time identification of "bin Laden raid" story,

When to do experiments ?

- If analysis alone is not sufficient to be published in a theory conference
- If target is a database or data mining or applied machine learning conference
 - Coding can be done in any programming language
 - All codes need to be submitted and need to be tested substantially
 - Same deadline as Dec 5th
- If the work is publishable in good theory conference (who decides ? Well! I do.)
 - NO experiment needed

- Experimental Project
 - CANNOT be simple implementation of bunch of algorithms
 - NEED to have an objective
 - Example: Compare different heavy-hitter algorithms
 - Can you answer when is an algorithm good ? What characteristics of data does it depend upon ?
 - Which parameters are crucial ? How to tune those parameters ?
 - Is it possible to give a unifying framework that fits all ?
 - G. Cormode and D. Firmani. On unifying the space of I_0 -sampling algorithms (read it to get an idea),
 - Heavy hitters, quantiles etc. have bee studied
 - Can you try graph based sketches or sketching for random matrices ?

Suggestions

- START EARLY
- READ PAPERS
- DIVIDE load among group members
- DISCUSS with me throughout—Friday afternoons are for you to discuss projects with me.