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Overview

In the previous lecture we saw how using sketching the second frequency moment can be approx-
imated well in space logarithmic in the input size. In this lecture, we explore the dimensionality
reduction technique-a by-product of sketching method in the streaming model. We introduce
Johnson-Linderstrauss (JL) Lemma, a very powerful tool for l2-dimensionality reduction. JLlemma
has found many applications in computer science. As a concrete application of JL lemma, we
consider nearest neighbor problem. We introduce a popular technique of locality sensitive hashing
(LSH) for the nearest neighbor problem. The discussion on LSH will continue in the next lecture
as well.

1 Linear Sketch as Dimensionality Reduction Technique

The algorithm for estimating F2 in the previous lecture maintains a linear sketch [Z1, Z2, ...., Zt] =
Rx where R is a t×n random matrix with entries {+1,−1} and x is the frequency vector. We Use
Y = ||Rx||22 to estimate t||x|22. t = O( 1

ε2
). Then by scaling by a factor of t, we obtain an estimate

of F2(x) = ||x||22. We have

Pr
[
|Y/t− ||x||22|| ≤ ε||x||22

]
>

1

c

where c is some constant. Streaming algorithm operating in the sketch model can be viewed as
dimensionality reduction technique. From a stream which can be viewed as a n-dimensional
vector, we obtain a sketch Y of dimension t. However, the distribution of Y is heavy-tailed, we
would like to have an estimate for F2 such that it gives an (1± ε) approximation with probability
(say) 1− 1

n . This can be achieved by taking median of Y1, Y2, .., Ys each an independent estimates
of Y .

The sketch operator R can be viewed as an approximate embedding of ln2 to sketch space C such
that

1. Each point in C can be described using only a few number so C ⊂ Rt, t << n, and

2. value of l2(S) is approximately equal to F (C(S)), where F (C(S)) = F (Y1, Y2, ..Yt) = median(Y1, Y2, .., Yt)

Note that F being a median operator (C,F ) is not a normed space. So performing any nontrivial
operations in the sketch space (e.g. clustering, similarity search, regression etc.) becomes difficult.
Does there exist a dimensionality reduction technique via sketching for which the sketch space is a
normed space. Below we see one such example, where sketching achieves dimensionality reduction
from ln2 to lt2, for t = O( 1

ε2
log n).
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2 A Different Linear Sketch

In stead of having ±1 as the entries of sketch operator R, we let each of its entry be a i.i.d. gaussian
random variables from N (0, 1). Recap the properties of normal distribution.

Normal distribution N (0, 1):

• Range (−∞,∞)

• Density f(x) = e−x
2
/
√

2π

• Mean=0, Variance=1

Basic facts

• If X and Y are independent random variables with normal distribution then so is X + Y

• If X and Y are independent with mean 0 then E
[
[X + Y ]2

]
= E

[
X2
]

+ E
[
Y 2
]

• E
[
cX
]

= cE
[
X
]
,Var

[
cX
]

= c2Var
[
X
]

Therefore, our estimation procedure is as follows. We have [Z1, Z2, .., Zt] = Rx and let Y =∑t
i=1 Z

2
i . We return Y/t

Let us consider any Zi, We have Zi =
∑n

j=1 xjr
i
j , where rij is the entry in the cell R[i, j].

E
[
Z2
i

]
= E[(

∑
j

rijxj)
2]

= E[
∑
j

(rij)
2x2j + 2

∑
j<k

E
[
xjxkr

i
jr
i
k

]
=

∑
j

x2jE
[
(rij)

2
]

+ 2
∑
j<k

xjxkE
[
rij
]
E
[
rik
]

= ||x||22

Here the third equality comes from considering that all rij and rik are independent and the fourth

equality comes from the fact that E
[
rij
]

= 0 for all rij and E
[
(rij)

2
]

= Var
[
rji
]

= 1.

Therefore, we have E
[
Y/t
]

= 1
t

∑
i E
[
Z2
i

]
= ||x||22.

We now want to show that Y concentrates around its expectation. For this we use JL lemma. From
JL lemma, by setting t = O( logn

ε2
), there exist constant C > 0 s.t. for small enough ε > 0

Pr[Y − t‖x‖22] > ε2t‖x‖22 ≤ e−Cε
2t

The above implies

Pr[Y/t− ‖x‖22] > ε2‖x‖22 ≤ e−Cε
2t

We now prove the above inequality which also establishes JL lemma.
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3 Johnson-Lindenstrauss Lemma

We shall assume without loss of generality ||x||22 = 1 (can be ensured by scaling). We defined Zi =
rix =

∑n
j=1 r

i
jxj where rij are i.i.d. random variables drawn from N (0, 1). Let Z = [Z1, Z2, ..., Zt].

We have E
[
Y
]

= E
[
||Z||22

]
= t. We only prove the upper tail here. The proof of the lower tail is

similar.

Lemma 1. Pr
[
||Z||22 ≥ t(1 + ε)2

]
≤ e−tε2+O(tε3).

Proof. We have Y as the random variable ||Z||22 and let α = t(1 + ε)2. For every s > 0, we have

Pr
[
Y > α

]
= Pr

[
esY > esα

]
≤

E
[
esY
]

esα
by Markov inequality

We now calculate the numerator.

E
[
esY
]

= E
[
es(Z

2
1+Z

2
2+...+Z

2
t )
]

= E
[ t∏
i=1

esZ
2
i
]

=
∏
i=1

E
[
esZ

2
i
]

by independence of Z2
i

We now calculate E
[
esZ

2
i
]
. We have Zi =

∑n
j=1 r

i
jxj where each rij ∼ N (0, 1). By 2-stability of

normal distribution, Zi is distributed as ||x||2G where G ∼ N (0, 1). Since ||x||2 = 1, Zi ∼ N (0, 1).
Hence,

E
[
esZ

2
i
]

=
1√
2π

∫ ∞
−∞

esa
2
e−a

2/2da

=
1√
2π

∫ ∞
−∞

e(s−
1
2
)a2da

We now apply change of variables u2 = (1 − s2)a2. Therefore, by elementary calculations, da =
1√
1−2sdu and the above integral becomes

1√
2π

∫ ∞
−∞

1√
1− 2s

e−u
2/2du =

1√
1− 2s

Therefore

E
[
esY
]

=
∏
i=1

E
[
esZ

2
i
]

=
1

(1− 2s)t/2
.

Hence

Pr
[
Y > α

]
≤ 1

(1− 2s)t/2esα

Since the above inequality holds for all s > 0, it holds for s = 1
2 −

t
2α . Inserting this value for s we

have

Pr
[
Y > α

]
≤
(
t

α

)−t/2
e−

α
2 (1− t

α) = e
1
2
(t−α)( tα)

−t/2
.
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Recall that α = t(1 + ε)2. Thus we have

e
1
2
(t−α)( tα)

−t/2
= e

t
2
(1−(1+ε)2)e−

t
2
ln ( tα)

= e
t
2
(−2ε−ε2−ln 1

(1+ε)2
)

= et(−ε−ε
2/2+ln (1+ε))

= et(−ε−ε
2/2+ε−ε2/2+ε3/3−...) = e−tε

2+O(tε3)

Lemma 2 (Johnson-Lindenstrauss). For any 0 < ε < 1 and any integer N , let t be a positive
integer such that

t ≥

(
4 lnN
ε2

2 + ε3

3

)

Then for any set V of N points in Rn, there is a map f : Rn → Rt such that for all u and v ∈ V .

(1− ε)‖u− v‖22 ≤ ‖f(u)− f(v)‖22 ≤ (1 + ε)‖u− v‖22

Proof. Set f to be the sketching matrix t× n with each entry being i.i.d. drawn from N (0, 1). Let
Z = f(u)−f(v) for a given u and v in V . Then by Lemma 1,Pr

[
(1− ε)‖u−v‖22 ≤ ‖f(u)−f(v)‖22 ≤

(1 + ε)‖u − v‖22
]
≥ 1 − e−tε2+O(tε3) ≥ 1 − 1

N3 . Now there are at most
(
N
2

)
pairs, hence by union

bound for all u, v ∈ V ,

Pr
[
(1− ε)‖u− v‖22 ≤ ‖f(u)− f(v)‖22 ≤ (1 + ε)‖u− v‖22

]
≥ 1− e−tε2+O(tε3) ≥ 1− 1

N
.

Therefore, by repeating a few times one can obtain the required map.

JL lemma has found many applications is computer science. We now focus on one particular
application of it namely, nearest neighbor search

4 Nearest Neighbor Problem

Given a set of points V , |V | = N , a distance metric d and a query point q, we want to find out the
point x ∈ V nearest to q. We first focus on the related near neighbor problem, where we ask given a
set of points V , |V | = N and a query point q, does there exist a point x ∈ V such that d(x, q) ≤ R.
Clearly, if we can solve this later question, then with an addition of O(logN) increase in query
time the nearest neighbor problem can be solved within arbitrary (1 + ε) (ε > 0 is a constant)
approximation by binary search on R.

When dimension is low, both nearest neighbor problem and near neighbor problem can be solved
efficiently. For example, when dimension (denoted by d) is 2, one requires space O(N) and query
time O(logN) to solve both of these problems. However, with increasing d, either the required
space or the query time becomes exponential in d. This is known as curse of dimensionality. To
tackle this, one resort to approximate near neighbor problem which we formally define below.
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Definition 3 ((c,R)-Near Neighbor Problem). Given a set of points V , a distance metric d and a
query point q, the (c,R)-Near Neighbor problem, c ≥ 1, requires if there exists a point x such that
d(x, q) ≤ R, then one must find a point x′ such that d(x′, q) ≤ cR with probability > (1 − δ) for a
given δ > 0.

We now introduce locality sensitive hashing (LSH) to solve (c,R)-Near Neighbor problem.

5 Locality Sensitive Hashing

The basic intuition behind LSH is that two points that are close to each other should hash to the
same bucket with high probability, while those which are far apart should hash to different buckets.
During preprocessing, we hash all the points in V to the respective buckets. When a query q comes,
one only searches in the buckets that contain q.

Definition 4. LSH A family of hash functions H is said to be (c,R, p1, p2)-sensitive for a distance
metric d, when:

1. Prh∼H [h(x) = h(y)] ≥ p1 for all x and y such that d(x.y) ≤ R

2. Prh∼H [h(x) = h(y)] ≤ p2 for all x and y such that d(x.y) > cR

For H to be LSH one must have p1 > p2.

Example 5. Let V ⊆ [0, 1]n and d(x, y) = Hamming distance between x and y. Let R << n and
cR << n, define H = {h1, h2, ..., hn} such that hi(x) = xi. p1 ≥ 1− R

n and p2 ≤ 1− cR
n .

6 Description of Algorithm:

Algorithm 1 Preprocessing

for all x ∈ V do
for all j ∈ [L] do

add x to bucketj(gj(x))
end for

end for

Algorithm 2 Query(q)

for j = 1 to L do
for all x ∈ bucketj(gj(q)) do

if d(x, q) ≤ cR then
return x

end if
end for

end for
return none
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Let H be a family of LSH which is (c,R, p1, p2) -sensitive. Select K×L hash functions from this fam-
ily independently and randomly: hi,j ∼ H, i ∈ [1,K], j ∈ [1, L]. Now define, gj = 〈h1,j , h2,j , ..., hK,j〉
for all j ∈ [1, L]. That is,

g1 = 〈h1,1, h2,1.....hk,1〉

g2 = 〈h1,2, h2,2.....hk.2〉
...

gL = 〈h1,L, h2,L.....hk,L〉

The preprocessing time is O(NLK) assuming computation of each hi,j requires O(1) time. Then
computing L g1, g2, ..., gL require O(KL) time and each of the N points need to be hashed giving
the required time complexity.

Hashing query point q by g1, g2, .., gL require O(KL) time. Suppose, F be the probability for any
given j that a point x is hashed to the same bucket by gj as q but d(x, q) > cR. Then the number
of such points hashed to the same bucket at a particular level on expectation is NF . There are
L levels, so searching through all these points require O(NLF ) time giving the said running time.
Therefore, in order to obtain a good query time, we want F to be as small as possible.
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