6.897: CSCI8980 Algorithmic Techniques for Big Data September 19, 2013

 Lecture 4

 Lecture 4
 Dr. Barna Saha
 Scribe: Barna Saha

Overview

In the previous lecture, we saw that using count-min sketch we can solve a variety of problems related to frequency estimates such as point query, range query, heavy-hitters etc. where the error in the estimate is in terms of the l_{1} norm of the stream. Can we obtain frequency estimates where error will be in terms of l_{2} norm of the stream? We will see one such algorithm Count-Sketch as part of an exercise. Today, we consider the following problem given a stream S of size m where elements are coming from domain $[1, n]$ and have unknown frequencies $f_{1}, f_{2}, \ldots, f_{n}$, what is the second frequency moment F_{2} of the stream ? Here F_{2} is defined as $F_{2}=\sum_{i=1}^{n} f_{i}^{2}$. We give an elegant solution based on sketches from [1] that requires logarithmic space and update time.

1 Estimating F_{2}

Let $\mathcal{H}=\{h:[n] \rightarrow\{+1,-1\}\}$ be a family of four-wise independent hash functions (we have seen previously how to construct such families). We initialize t counters $Z_{1}, Z_{2}, \ldots Z_{t}$ to 0 and maintain $Z_{j}=Z_{j}+a h_{j}(i)$ on arrival of (i, a) for $j=1, \ldots, t=\frac{c}{\epsilon^{2}}$, where c is some constant to be fixed later. We return $Y=\frac{1}{t} \sum_{j=1}^{t} Z_{j}^{2}$ as the estimate of F_{2} of the stream.
We first show that Y is an unbiased estimator of F_{2}, that is $\mathrm{E}[Y]=F_{2}(S)$. Then we compute $\operatorname{Var}[Y]$ and apply Chebyshev inequality to bound the deviation of Y from its expectation that is F_{2}.

Lemma 1. $\mathrm{E}[Y]=F_{2}$

Proof.

$$
\mathrm{E}[Y]=\mathrm{E}\left[\frac{1}{t} \sum_{j=1}^{t} Z_{j}^{2}\right]=\frac{1}{t} \sum_{i=1}^{t} \mathrm{E}\left[Z_{j}^{2}\right] .
$$

Now, $Z_{j}=\sum_{i} h_{j}(i) f_{i}$. Hence

$$
\begin{aligned}
\mathrm{E}\left[Z_{j}^{2}\right]= & \mathrm{E}\left[\left(\sum_{i} h_{j}(i) f_{i}\right)^{2}\right] \\
= & \sum_{i} \mathrm{E}\left[\left(h_{j}(i)\right)^{2}\right] f_{i}^{2}+2 \sum_{i<k} \mathrm{E}\left[h_{j}(i)\right] \mathrm{E}\left[h_{j}(k)\right] f_{i} f_{k} \\
& \text { by linearity of expectation and independence of } h_{j}(i) \text { and } h_{j}(k) \\
= & \sum_{i} f_{i}^{2} \text { since } \mathrm{E}\left[h_{j}(i)\right]=0 \text { for all } i \text { and } \mathrm{E}\left[\left(h_{j}(i)\right)^{2}\right]=1 \text { for all } i \\
= & F_{2}
\end{aligned}
$$

Therefore,

$$
\mathrm{E}[Y]=\frac{1}{t} \sum_{i=1}^{t} \mathrm{E}\left[Z_{j}^{2}\right]=F_{2}
$$

Lemma 2. $\operatorname{Var}[Y] \leq \frac{4 F_{2}^{2}}{t}$
Proof.

$$
\operatorname{Var}[Y]=\operatorname{Var}\left[\frac{1}{t} \sum_{j=1}^{t} Z_{j}^{2}\right]=\frac{1}{t^{2}} \sum_{i=1}^{t} \operatorname{Var}\left[Z_{j}^{2}\right]
$$

In the above we obtained the second inequality by noting that Z_{j}^{2} random variables are all pair-wise independent. We now calculate $\operatorname{Var}\left[Z_{j}^{2}\right]$ which is $\mathrm{E}\left[Z_{j}^{4}\right]-\left(\mathrm{E}\left[Z_{j}^{2}\right]\right)^{2}$. Note that

$$
\mathrm{E}\left[Z_{j}^{4}\right]=\mathrm{E}\left[\left(\sum_{i} h_{j}(i) f_{i}\right)^{4}\right]=\sum_{a \leq b \leq c \leq d} f_{a} f_{b} f_{c} f_{d} \mathrm{E}\left[f_{a} f_{b} f_{c} f_{d}\right]
$$

Now note that if either of the following conditions hold $a<b<c<d$ or exactly three among a, b, c, d are equal, then those terms contribute 0 . Hence

$$
\begin{aligned}
\mathrm{E}\left[Z_{j}^{4}\right]=\mathrm{E}\left[\left(\sum_{i} h_{j}(i) f_{i}\right)^{4}\right] & =\sum_{i} \mathrm{E}\left[\left(h_{j}(i)\right)^{4}\right] f_{i}^{4}+\binom{4}{2} \sum_{i<k} \mathrm{E}\left[\left(h_{j}(i)\right)^{2}\right] \mathrm{E}\left[\left(h_{j}(k)\right)^{2}\right] f_{i}^{2} f_{k}^{2} \\
& =\sum_{i} \mathrm{E}\left[\left(h_{j}(i)\right)^{4}\right] f_{i}^{4}+6 \sum_{i<k} f_{i}^{2} f_{k}^{2}
\end{aligned}
$$

On the otherhand,

$$
\left(\mathrm{E}\left[Z_{j}^{2}\right]\right)^{2}=\sum_{i} \mathrm{E}\left[\left(h_{j}(i)\right)^{4}\right] f_{i}^{4}+2 \sum_{i<k} f_{i}^{2} f_{k}^{2}
$$

Hence

$$
\operatorname{Var}\left[Z_{j}^{2}\right]=4 \sum_{i<k} f_{i}^{2} f_{k}^{2} \leq 4 \max _{i} f_{i}^{2} \sum_{i} f_{i}^{2} \leq 4 F_{2}^{2}
$$

Therefore,

$$
\operatorname{Var}[Y]=\frac{1}{t^{2}} \sum_{i=1}^{t} \operatorname{Var}\left[Z_{j}^{2}\right] \leq \frac{4 F_{2}}{t}
$$

Lemma 3. $\operatorname{Pr}\left[|Y-\mathrm{E}[Y]|>\epsilon F_{2}\right] \leq \frac{1}{3}$ where $t \geq \frac{12}{\epsilon^{2}}$.

Proof. By Chebyshev Inequality

$$
\operatorname{Pr}\left[|Y-\mathrm{E}[Y]|>\epsilon F_{2}\right] \leq \frac{\operatorname{Var}[Y]}{\epsilon^{2} F_{2}^{2}} \leq \frac{4 F_{2}^{2}}{t \epsilon^{2} F_{2}^{2}} \leq \frac{1}{3}
$$

So, we have an estimate Y for F_{2} which guarantees an absolute error at most ϵF_{2} with probability at least $\frac{2}{3}$? Can we boost this probability to $(1-\delta)$ for any $\delta>0$? To do so, we apply a generic technique, boosting by median.

1.1 Boosting by Median

We keep $s=O(\log 1 \delta)$ independent estimates $Y_{1}, Y_{2}, \ldots, Y_{s}$. We then arrange these values in nonincreasing order and return the $\lceil s / 2\rceil$-th estimate, that is the median of $Y_{1}, Y_{2}, \ldots, Y_{s}$. Let without loss of generality assume, $Y_{1} \leq Y_{2} \leq \ldots \leq Y_{s}$. And for simplicity assume, s is even. First consider the upper tail (the lower tail is similar). If $Y_{s / 2}>(1+\epsilon) F_{2}$ then all of $Y_{s / 2+1}, Y_{s / 2+2}, \ldots, Y_{s}$ must be higher than $F_{2}(1+\epsilon)$.
Define an indicator random variable X_{i}, which is 1 if $Y_{i}>(1+\epsilon) F_{2}$ and 0 otherwise. From Lemma $3 \operatorname{Pr}\left[X_{i}=1\right] \leq \frac{1}{3}$. Hence if we denote by X, the number of estimates that return value more than $(1+\epsilon) F_{2}$, then $X=\sum_{i=1}^{s} X_{i}$ and $\mathrm{E}[X] \leq \frac{s}{3}$.

We now apply the Chernoff's bound to obtain

$$
\operatorname{Pr}\left[Y_{s / 2}>(1+\epsilon) F_{2}\right]=\operatorname{Pr}\left[X>\frac{s}{2}\right]=\operatorname{Pr}\left[X>\mathrm{E}[X]\left(1+\frac{1}{3}\right)\right] \leq e^{-\frac{s}{3} \frac{1}{9} \frac{1}{3}}
$$

Setting $s=C \ln \frac{1}{\delta}$ where C is a large enough constant, the above probability becomes less than $\delta / 2$.

Similarly, we have

$$
\operatorname{Pr}\left[Y_{s / 2}<(1-\epsilon) F_{2}\right]<\frac{\delta}{2} .
$$

Therefore, by union bound

$$
\operatorname{Pr}\left[\left|Y_{s / 2}-F_{2}\right|>\epsilon F_{2}\right]<\delta .
$$

Finally, we have the following theorem
Theorem 4. There is a randomized algorithm for estimating F_{2} within error $(1 \pm \epsilon)$ with probability at least $(1-\delta)$ that takes space $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ and update time $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$.

References

[1] Noga Alon, Yossi Matias, Mario Szegedy: The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci. 58(1): 137-147 (1999)

