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Overview

In the previous lecture, we saw that using count-min sketch we can solve a variety of problems
related to frequency estimates such as point query, range query, heavy-hitters etc. where the error
in the estimate is in terms of the l1 norm of the stream. Can we obtain frequency estimates where
error will be in terms of l2 norm of the stream ? We will see one such algorithm Count-Sketch as
part of an exercise. Today, we consider the following problem given a stream S of size m where
elements are coming from domain [1, n] and have unknown frequencies f1, f2, ..., fn, what is the
second frequency moment F2 of the stream ? Here F2 is defined as F2 =

∑n
i=1 f

2
i . We give an

elegant solution based on sketches from [1] that requires logarithmic space and update time.

1 Estimating F2

Let H = {h : [n] → {+1,−1}} be a family of four-wise independent hash functions (we have seen
previously how to construct such families). We initialize t counters Z1, Z2, ...Zt to 0 and maintain
Zj = Zj + ahj(i) on arrival of (i, a) for j = 1, ..., t = c

ε2
, where c is some constant to be fixed later.

We return Y = 1
t

∑t
j=1 Z

2
j as the estimate of F2 of the stream.

We first show that Y is an unbiased estimator of F2, that is E
[
Y
]

= F2(S). Then we compute
Var
[
Y
]

and apply Chebyshev inequality to bound the deviation of Y from its expectation that is
F2.

Lemma 1. E
[
Y
]

= F2

Proof.

E
[
Y
]

= E
[1
t

t∑
j=1

Z2
j

]
=

1

t

t∑
i=1

E
[
Z2
j

]
.

Now, Zj =
∑

i hj(i)fi. Hence

E
[
Z2
j

]
= E

[
(
∑
i

hj(i)fi)
2
]

=
∑
i

E
[
(hj(i))

2
]
f2i + 2

∑
i<k

E
[
hj(i)

]
E
[
hj(k)

]
fifk

by linearity of expectation and independence of hj(i) and hj(k)

=
∑
i

f2i since E
[
hj(i)

]
= 0 for all i and E

[
(hj(i))

2
]

= 1 for all i

= F2
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Therefore,

E
[
Y
]

=
1

t

t∑
i=1

E
[
Z2
j

]
= F2.

Lemma 2. Var
[
Y
]
≤ 4F 2

2
t

Proof.

Var
[
Y
]

= Var
[1
t

t∑
j=1

Z2
j

]
=

1

t2

t∑
i=1

Var
[
Z2
j

]
.

In the above we obtained the second inequality by noting that Z2
j random variables are all pair-wise

independent. We now calculate Var
[
Z2
j

]
which is E

[
Z4
j

]
− (E

[
Z2
j

]
)2. Note that

E
[
Z4
j

]
= E

[
(
∑
i

hj(i)fi)
4
]

=
∑

a≤b≤c≤d
fafbfcfdE

[
fafbfcfd

]
.

Now note that if either of the following conditions hold a < b < c < d or exactly three among
a, b, c, d are equal, then those terms contribute 0. Hence

E
[
Z4
j

]
= E

[
(
∑
i

hj(i)fi)
4
]

=
∑
i

E
[
(hj(i))

4
]
f4i +

(
4

2

)∑
i<k

E
[
(hj(i))

2
]
E
[
(hj(k))2

]
f2i f

2
k

=
∑
i

E
[
(hj(i))

4
]
f4i + 6

∑
i<k

f2i f
2
k

On the otherhand,

(E
[
Z2
j

]
)2 =

∑
i

E
[
(hj(i))

4
]
f4i + 2

∑
i<k

f2i f
2
k

Hence
Var
[
Z2
j

]
= 4

∑
i<k

f2i f
2
k ≤ 4 max

i
f2i
∑
i

f2i ≤ 4F 2
2

Therefore,

Var
[
Y
]

=
1

t2

t∑
i=1

Var
[
Z2
j

]
≤ 4F2

t
.

Lemma 3. Pr
[
|Y − E

[
Y
]
| > εF2

]
≤ 1

3 where t ≥ 12
ε2
.

Proof. By Chebyshev Inequality

Pr
[
|Y − E

[
Y
]
| > εF2

]
≤

Var
[
Y
]

ε2F 2
2

≤ 4F 2
2

tε2F 2
2

≤ 1

3

So, we have an estimate Y for F2 which guarantees an absolute error at most εF2 with probability
at least 2

3 ? Can we boost this probability to (1− δ) for any δ > 0 ? To do so, we apply a generic
technique, boosting by median.
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1.1 Boosting by Median

We keep s = O(log 1δ) independent estimates Y1, Y2, ..., Ys. We then arrange these values in non-
increasing order and return the ds/2e-th estimate, that is the median of Y1, Y2, ..., Ys. Let without
loss of generality assume, Y1 ≤ Y2 ≤ ... ≤ Ys. And for simplicity assume, s is even. First consider
the upper tail (the lower tail is similar). If Ys/2 > (1 + ε)F2 then all of Ys/2+1, Ys/2+2, ..., Ys must
be higher than F2(1 + ε).

Define an indicator random variable Xi, which is 1 if Yi > (1 + ε)F2 and 0 otherwise. From Lemma
3 Pr

[
Xi = 1

]
≤ 1

3 . Hence if we denote by X, the number of estimates that return value more than
(1 + ε)F2, then X =

∑s
i=1Xi and E

[
X
]
≤ s

3 .

We now apply the Chernoff’s bound to obtain

Pr
[
Ys/2 > (1 + ε)F2

]
= Pr

[
X >

s

2

]
= Pr

[
X > E

[
X
]
(1 +

1

3
)
]
≤ e−

s
3

1
9

1
3

Setting s = C ln 1
δ where C is a large enough constant, the above probability becomes less than

δ/2.

Similarly, we have

Pr
[
Ys/2 < (1− ε)F2

]
<
δ

2
.

Therefore, by union bound
Pr
[
|Ys/2 − F2| > εF2

]
< δ.

Finally, we have the following theorem

Theorem 4. There is a randomized algorithm for estimating F2 within error (1±ε) with probability
at least (1− δ) that takes space O( 1

ε2
log 1

δ ) and update time O( 1
ε2

log 1
δ ).
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