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Overview

In the previous lecture, we saw that using count-min sketch we can solve a variety of problems
related to frequency estimates such as point query, range query, heavy-hitters etc. where the error
in the estimate is in terms of the /1 norm of the stream. Can we obtain frequency estimates where
error will be in terms of I3 norm of the stream 7 We will see one such algorithm Count-Sketch as
part of an exercise. Today, we consider the following problem given a stream S of size m where
elements are coming from domain [1,n] and have unknown frequencies fi, fo, ..., f, what is the
second frequency moment Fh of the stream ? Here F5 is defined as F» = > 1" | fZ-Q. We give an
elegant solution based on sketches from [1] that requires logarithmic space and update time.

1 Estimating F,

Let H = {h : [n] — {+1,—1}} be a family of four-wise independent hash functions (we have seen
previously how to construct such families). We initialize ¢ counters Z, Zs, ...Z; to 0 and maintain
Zj = Zj+ ah;(i) on arrival of (i,a) for j = 1,...,t = 5, where c is some constant to be fixed later.
We return Y = %22‘21 ZJ2 as the estimate of F, of the stream.

We first show that Y is an unbiased estimator of Fy, that is E[Y] = F5(S). Then we compute

Var[Y] and apply Chebyshev inequality to bound the deviation of Y from its expectation that is
.

Lemma 1. E[Y] =F

Proof.

Now, Z; =Y. h;(i) fi. Hence
e[ = E[(Yh (1]
= > E[(hy (@)1 7 + 2D E[h;(0)]E[h; (k)] fifi
i i<k
by linearity of expectation and independence of h;(i) and h;(k)
= Z 7 since E[h;(i)] = 0 for all i and E[(h;(i))?] = 1 for all i

= F



Therefore,

Lemma 2. Var[Y] < ﬁ

Proof.
i~ 1
Var[Y] = Var[~ RAE = > Var[Z7].
j=1 i=1

In the above we obtained the second inequality by noting that ZJ2 random variables are all pair-wise
independent. We now calculate Var[ZJZ] which is E[Z;-l] —( E[ZJZ] )2. Note that

=E[O"hi(i) ) = D fafofefdE[fafsfetd).
% a<b<c<d

Now note that if either of the following conditions hold a < b < ¢ < d or exactly three among
a, b, c,d are equal, then those terms contribute 0. Hence

—E[(X )] = L[]+ (5) el JE (s 7272

¢ i<k
= El )]s + 63 SR
i<k
On the otherhand,
= El )] + 23 JEA
i<k
Hence
Var[Z7] =4 713 <4maxf2zf2 < 4F2
i<k
Therefore,
t
4F,
Var[Y Z r[22] < .
O
Lemma 3. Pr[|Y —E[Y]| > ef3] < where t > .
Proof. By Chebyshev Inequality
Var[Y] 4F?2 1
Pr||Y —E|Y | < < 2 <=
WY —EY]I> el < o < app =<3
O]

So, we have an estimate Y for F» which guarantees an absolute error at most eF» with probability
at least % ? Can we boost this probability to (1 — §) for any 6 > 0 7 To do so, we apply a generic
technique, boosting by median.



1.1 Boosting by Median

We keep s = O(log 10) independent estimates Y7, Ya, ..., Ys. We then arrange these values in non-
increasing order and return the [s/2]-th estimate, that is the median of Y7,Ys, ..., Ys. Let without
loss of generality assume, Y7 < Y5 < ... < Y;. And for simplicity assume, s is even. First consider
the upper tail (the lower tail is similar). If Y,/5 > (1 + €)F» then all of Y, /541, Y, /249, ..., Ys must
be higher than Fy(1 + ¢€).

Define an indicator random variable X;, which is 1 if ¥; > (1 +¢€)F» and 0 otherwise. From Lemma

3 Pr[Xi = 1] < % Hence if we denote by X, the number of estimates that return value more than
(1+¢)F, then X =7 | X; and E[X] < 5.

We now apply the Chernoff’s bound to obtain

©|=
ol

PrYyo > (1+€)F] =Pr[X > g] =Pr[X > E[X](1+ é)] <es

Setting s = C ln% where C' is a large enough constant, the above probability becomes less than

5/2.
Similarly, we have

PF[YS/Q < (1 — E)FQ] <

N|

Therefore, by union bound
PFHY;/Q — F2| > EFQ] < 4.

Finally, we have the following theorem

Theorem 4. There is a randomized algorithm for estimating Fy within error (1+¢€) with probability
at least (1 — ) that takes space O(%2 log ) and update time O(Ei2 log §).
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