
CMPSCI 711: More Advanced Algorithms
Section 2-1: Graph Streams

Andrew McGregor

Last Compiled: April 29, 2012

1/11

Graph Streams

I Consider a stream of m edges

〈e1, e2, , em〉

defining a graph G with nodes V = [n] and E = {e1, . . . , em}
I Massive graphs include social networks, web graph, call graphs, etc.

I What can we compute about G in o(m) space?

I Focus on semi-streaming space restriction of O(n · polylog n) bits.

2/11

Warm-Up: Connectivity

I Goal: Compute the number of connected components.

I Algorithm: Maintain a spanning forest F
I F ← ∅
I For each edge (u, v), if u and v aren’t connected in F ,

F ← F ∪ {(u, v)}

I Analysis:
I F has the same number of connected components as G
I F has at most n − 1 edges.

I Thm: Can count connected components in O(n log n) space.

3/11

Extension: k-Edge Connectivity

I Goal: Check if all cuts are of size at least k .

I Algorithm: Maintain k forests F1, . . . ,Fk

I F1, . . . ,Fk ← ∅
I For each edge (u, v), find smallest i ≤ k such that u and v aren’t

connected in Fi ,
Fi ← Fi ∪ {(u, v)}

If no such i exists, ignore edge.

I Analysis:
I Each Fi has at most n − 1 edges so total edges is O(nk)
I Lemma: Min-Cut(V ,E) < k iff Min-Cut(V ,F1 ∪ . . . ∪ Fk) < k

I Thm: Can check k-connectivity in O(kn log n) space.

4/11

Proof of Lemma

I Let H = (V ,F1 ∪ . . . ∪ Fk) and let (S ,V \ S) be an arbitrary cut.

I Since H is a subgraph:

|EG (S)| ≥ |EH(S)|

where EH(S) and EG (S) are the edges across the cut in H and G

I Suppose there exists (u, v) ∈ EG (S) but (u, v) 6∈ F1 ∪ . . . ∪ Fk .
Then (u, v) must be connected in each Fi . Since Fi are disjoint,

|EH(S)| ≥ min(|EG (S)|, k)

5/11

Spanners

Definition
An α-spanner of graph G is a subgraph H such that for any nodes u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v) .

where dG and dH are the shortest path distances in G and H respectively.

I Algorithm:
I H ← ∅.
I For each edge (u, v), if dH(u, v) ≥ 2t, H ← H ∪ {(u, v)}

I Analysis:
I Distances increase by at most a factor 2t − 1 since an edge (u, v) is

only forgotten if there’s already a detour of length at most 2t − 1.
I Lemma: H has O(n1+1/t) edges since all cycles have length ≥ 2t + 1.

Theorem
Can (2t − 1)-approximate all distances using only O(n1+1/t) space.

6/11

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length ≤ 2t has O(n1+1/t) edges.

I Let d = 2m/n be the average degree of H.

I Let J be the graph formed by removing nodes with degree less than
d/2 until no such nodes remain.

I J is not empty because < m/(d/2) = n nodes can be removed.

I Grow a BFS of depth t from an arbitrary node in J.

I Because a) no cycles of length less than 2t + 1 and b) all degrees in
J are at least d/2, number of nodes at t-th level of BFS is at least

(d/2− 1)t = (m/n − 1)t

I But (m/n − 1)t ≤ |J| ≤ n and therefore,

m ≤ n + n1+1/t .

7/11

Sparsifier

Definition
An α-sparsifier of graph G is a weighted subgraph H such that for any
cut (S ,V \ S),

CG (S) ≤ CH(S) ≤ αCG (S) .

where CG and CH is the capacity of the cut in G and H respectively.

Theorem (Batson, Spielman, Srivastava)
There exists a (non-streaming) algorithm A that constructs a
(1 + ε)-sparsifier with only O(nε−2) edges.

Idea for stream algorithm is to use A as a black box to “recursively”
sparsify the graph stream.

8/11

Basic Properties of Sparsifiers

Lemma
Suppose H1 and H2 are α-sparsifiers of G1 and G2. Then H1 ∪ H2 is an
α-sparsifier of G1 ∪ G2.

Lemma
Suppose J is an α-sparsifiers of H and H is an α-sparsifier of G . Then J
is an α2-sparsifier of G .

9/11

Stream Sparsification

I Divide length m stream into segments of length t = O(nε−2)

I Let G0,G1, . . . ,Gm/t−1 be graphs defined by each segment and let

G 1
0 = G0 ∪ G1 , G 1

2 = G2 ∪ G3 , . . . , G 1
m/t−2 = Gm/t−2 ∪ Gm/t−1

and for i > 1,

G i
j2i = Gj2i ∪ Gj2i+1 ∪ . . . ∪ Gj2i+2i−1

and note that G logm
0 = G .

I Let G̃ i
j2i be a (1 + γ)-sparsifier of G̃ i−1

j2i
∪ G̃ i−1

j2i+2i−1 and G̃j = Gj .

I Hence, G̃ log n
0 is a (1 + γ)logm-sparsifier of G .

I Can compute G̃ log n
0 in O(nγ−2 log m) space.

I Setting γ = ε
logm gives (1 + ε)-sparsifier in O(nε−2 log3 m) space.

10/11

Spectral Sparsification
I Given a graph G , the Laplacian matrix LG ∈ Rn×n has entries:

Lij =


deg(i) if i = j

−1 if (i , j) ∈ E

0 otherwise

I H is an (1 + ε) spectral sparsifier if for all

∀x ∈ Rn, (1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

I Note that xTLGx =
∑

(i,j)∈E (xi − xj)
2 and hence H is a (1 + ε)

sparsifier if

∀x ∈ {0, 1}n, (1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

and therefore spectral sparsification is a generalization of (“cut” or
“combinatorial”) sparsification.

I Spectral sparsifiers also approximate eigenvalues. These relate to
expansion properties, random walks, mixing times etc.

11/11

