CMPSCI 711: More Advanced Algorithms

Section 2-1: Graph Streams

Andrew McGregor

Last Compiled: April 29, 2012

Graph Streams

Consider a stream of m edges

(e, e, 0 o em)

defining a graph G with nodes V = [n] and E = {ey,...,ep}
Massive graphs include social networks, web graph, call graphs, etc.
What can we compute about G in o(m) space?

Focus on semi-streaming space restriction of O(n - polylog n) bits.

Warm-Up: Connectivity

Goal: Compute the number of connected components.
Algorithm: Maintain a spanning forest F

» F+ 0

» For each edge (u, v), if v and v aren’t connected in F,

F+ FU{(u,v)}

Analysis:
> F has the same number of connected components as G
> F has at most n — 1 edges.

Thm: Can count connected components in O(nlog n) space.

Extension: k-Edge Connectivity

Goal: Check if all cuts are of size at least k.
Algorithm: Maintain k forests Fq, ..., Fy
> F1,...,Fk %@
> For each edge (u, v), find smallest / < k such that v and v aren't
connected in F;,
Fi FU{(u,v)}
If no such i exists, ignore edge.
Analysis:
» Each F; has at most n — 1 edges so total edges is O(nk)
> Lemma: Min-Cut(V, E) < k iff Min-Cut(V, L U...UF) < k

Thm: Can check k-connectivity in O(knlog n) space.

Proof of Lemma

» Let H=(V,FLU...UF) and let (S5, V' \ S) be an arbitrary cut.
» Since H is a subgraph:

|Ec(S)| > |En(S)|

where Ey(S) and Eg(S) are the edges across the cut in H and G

> Suppose there exists (u,v) € Eg(S) but (u,v) &€ FU...U Fy.
Then (u, v) must be connected in each F;. Since F; are disjoint,

|En(S)] = min(|Ec(S)], k)

Spanners

Definition
An a-spanner of graph G is a subgraph H such that for any nodes u, v,

de(u,v) < dy(u,v) < adg(u, v) .
where dg and dy are the shortest path distances in G and H respectively.

» Algorithm:
> H<+ 0.
> For each edge (u, v), if du(u,v) >2t, H<+ HU{(u,v)}
> Analysis:
» Distances increase by at most a factor 2t — 1 since an edge (u, v) is

only forgotten if there's already a detour of length at most 2t — 1.
» Lemma: H has O(n**'/*) edges since all cycles have length > 2t + 1.

Theorem
Can (2t — 1)-approximate all distances using only O(n'*t1/t) space.

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length < 2t has O(n'*t1/t) edges.

> Let d = 2m/n be the average degree of H.

> Let J be the graph formed by removing nodes with degree less than
d/2 until no such nodes remain.

J is not empty because < m/(d/2) = n nodes can be removed.
Grow a BFS of depth t from an arbitrary node in J.

Because a) no cycles of length less than 2t + 1 and b) all degrees in
J are at least d/2, number of nodes at t-th level of BFS is at least

(d/2—1)"=(m/n—1)f
But (m/n— 1)t < |J| < n and therefore,

m§n+n1+1/t.

Sparsifier

Definition
An a-sparsifier of graph G is a weighted subgraph H such that for any
cut (S,V'\S),

Co(S) < Cu(S) < ale(S) -

where Cg and Cy is the capacity of the cut in G and H respectively.

Theorem (Batson, Spielman, Srivastava)

There exists a (non-streaming) algorithm A that constructs a
(1 + €)-sparsifier with only O(ne=2) edges.

Idea for stream algorithm is to use A as a black box to “recursively”
sparsify the graph stream.

Basic Properties of Sparsifiers

Lemma
Suppose Hy and H» are a-sparsifiers of Gy and G,. Then Hy U H, is an
a-sparsifier of Gy U G;.

Lemma
Suppose J is an a-sparsifiers of H and H is an «-sparsifier of G. Then J

is an o-sparsifier of G.

Stream Sparsification

» Divide length m stream into segments of length t = O(ne~?2)

Let Go, G1, .-, Gp/¢—1 be graphs defined by each segment and let

Gol =GyU Gy , Gzl =G UG, ..., Gr%v/t72 = Gm/t—2U Gm/t—l

and for i > 1,

[. . o
G:j2i — j2' U C;j2’+1 U . U G:,'2:+2:71

and note that G = G.
Let @fz, be a (1 4+ 7)-sparsifier of @;2—1 U CE}rzfﬂ and G; = G;.
Hence, G is a (1 + 7)'°8 ™-sparsifier of G.

Can compute C(I)Og" in O(ny~2log m) space.

€

ios m 8ives (1 + €)-sparsifier in O(ne~2log® m) space.

Setting v =

Spectral Sparsification

» Given a graph G, the Laplacian matrix Lg € R™" has entries:

deg(i) ifi=j
Lj=4-1 if (i,j) e E
0 otherwise

» His an (1 + €) spectral sparsifier if for all

Vx €R", (1 —e)x Lex < x"Lyx < (14 e)x Lgx

> Note that x"Lex = Y-, cg(xi — x) and hence H is a (1 + ¢)
sparsifier if '

Vx €{0,1}", (1 —e)x"Lex < xTLpyx < (1+¢€)x" Legx

and therefore spectral sparsification is a generalization of (“cut” or
“combinatorial”) sparsification.

» Spectral sparsifiers also approximate eigenvalues. These relate to
expansion properties, random walks, mixing times etc.

11/11

