Lecture 2

Barna Saha

AT\&T-Labs Research
September 12, 2013

Outline

Concentration Inequalities Revisited

Universal Family of Hash Functions

Counting Distinct Items
Analysis of Algorithm from Lecture 0

AMS Algorithm for Counting Distinct Element

First and Second Moment Bounds

- Markov Inequality For any positive random variable X and $t>0$

$$
\operatorname{Pr}[X>t] \leq \frac{\mathrm{E}[X]}{t}
$$

- Chebyshev Inequality For any random variable X and $t>0$

$$
\operatorname{Pr}[|X-\mathrm{E}[X]|>t] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

The Chernoff Bound

- Let $X_{1}, X_{2} \ldots X_{n}$ be n independent Bernoulli random variables with $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$. Let $X=\sum X_{i}$. Hence,
$E[X]=E\left[\sum X_{i}\right]=\sum E\left[X_{i}\right]=\sum \operatorname{Pr}\left(X_{i}=1\right)=\sum p_{i}=\mu($ say $)$
Then the Chernoff Bound says for any $\epsilon>0$

$$
\begin{aligned}
\operatorname{Pr}(X>(1+\epsilon) \mu) & \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{\epsilon}}\right)^{\mu} \text { and } \\
\operatorname{Pr}(X<(1-\epsilon) \mu) & \leq\left(\frac{e^{-\epsilon}}{(1-\epsilon)^{1-\epsilon}}\right)^{\mu}
\end{aligned}
$$

When $0<\epsilon<1$ the above expression can be further simplified to

$$
\begin{aligned}
& \operatorname{Pr}(X>(1+\epsilon) \mu) \leq e^{\frac{-\mu \epsilon^{2}}{3}} \text { and } \\
& \operatorname{Pr}(X<(1-\epsilon) \mu) \leq e^{\frac{-\mu \epsilon^{2}}{2}}
\end{aligned}
$$

Hence

$$
\operatorname{Pr}(|X-\mu|>\epsilon \mu) \leq 2 e^{\frac{-\mu \epsilon^{2}}{B^{3}}}
$$

Universal Hash Family

A family of hash functions $\mathcal{H}=\{h \mid h:[N]-->[M]\}$ is called a pairwise independent family of hash functions if for all $i \neq j \in[N]$ and any $k, l \in[M]$

$$
\begin{equation*}
\operatorname{Pr}_{h \leftarrow \mathcal{H}}[h(i)=k \wedge h(j)=l]=\frac{1}{M^{2}} \text { strongly universal hash family } \tag{1}
\end{equation*}
$$

Hash functions are uniform over [M],

$$
\begin{gather*}
\operatorname{Pr}_{h \leftarrow \mathcal{H}}[h(i)=k]=\frac{1}{M} \tag{2}\\
\operatorname{Pr}_{h \leftarrow \mathcal{H}}[h(i)=h(j)]=\frac{1}{M} \text { weakly universal hash family } \tag{3}
\end{gather*}
$$

- Construction Let p be a prime. For any $a, b \in \mathbb{Z}_{p}=\{0,1,2, . ., p-1\}$, define $h_{a, b}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ by $h_{a, b}(x)=a x+b \bmod p$. Then the collection of functions $\mathcal{H}=\left\{h_{a, b} \mid a, b \in \mathbb{Z}_{p}\right\}$ is a pairwise independent hash family.

Counting Distinct Items

Algorithm $1[\mathbf{a}, \epsilon, \delta]$

$\epsilon^{\prime}=\epsilon / 2$
for $t=1,\left\lceil\left(1+\epsilon^{\prime}\right)\right\rceil,\left\lceil\left(1+\epsilon^{\prime}\right)^{2}\right\rceil, \ldots\left\lceil\left(1+\epsilon^{\prime}\right)^{\log _{1+\epsilon^{\prime}} n}\right\rceil$ do
$\delta^{\prime}=\frac{\epsilon^{\prime} \delta}{\log n}\{$ Run in parallel $\}$
$b_{t}=\operatorname{ESTIMATE}\left(\mathbf{a}, t, \epsilon^{\prime}, \delta^{\prime}\right)\left\{b_{t}\right.$ is a boolean variable YES/ NO\}
end for
return the smallest value of t such that $b_{t-1}=\mathrm{YES}$ and $b_{t}=\mathrm{NO}$, if no such t exists, return n

Counting Distinct Items

Algorithm 2 [ESTIMATE(a, $\left.t, \epsilon^{\prime}, \delta^{\prime}\right)$]
count $\leftarrow 0$
for $i=1$ to $\frac{c}{\epsilon^{\prime 2}} \log \frac{1}{\delta^{\prime}}$ do
Select a hash function h_{i} uniformly and randomly from a fullyindependent hash family \mathcal{H} \{run in parallel $\}$
$b_{t}^{i} \leftarrow \mathrm{NO}$
repeat
Consider the current element in the stream a, say $a_{l}=(j, \nu)$
if $h_{i}(j)==1$ then
$b_{t}^{i} \leftarrow$ YES, BREAK
end if
until a is exhausted
if $b_{t}^{i}==\mathrm{NO}$ then

$$
\text { count }=\text { count }+1
$$

end if
end for

Counting Distinct Items

```
Algorithm 3[ESTIMATE(a, t, \epsilon', 徝)]continued
    if count }\geq\frac{1}{e}\frac{c}{\mp@subsup{\epsilon}{}{\prime2}}\operatorname{log}\frac{1}{\mp@subsup{\delta}{}{\prime}}\mathrm{ then
        return NO
    else
        return YES
    end if
```

- Space Complexity: $O\left(\frac{1}{\epsilon^{3}} \log n\left(\log \frac{1}{\delta}+\log \log n+\log \frac{1}{\epsilon}\right)\right)$
- Time Complexity: $O\left(\frac{1}{\epsilon^{3}} \log n\left(\log \frac{1}{\delta}+\log \log n+\log \frac{1}{\epsilon}\right)\right)$

Counting Distinct Items

- Lemma

Consider the ith round of ESTIMATE $\left(\mathbf{a}, t, \epsilon^{\prime}, \delta^{\prime}\right)$ for any $i \in\left[\frac{C}{\epsilon^{2}} \log \frac{1}{\delta^{\prime}}\right]$

- If $D E>\left(1+\epsilon^{\prime}\right) t$ then $\operatorname{Pr}\left[b_{t}^{i}==N O\right] \leq \frac{1}{e}-\frac{\epsilon}{2 e}$.
- If $D E<\left(1-\epsilon^{\prime}\right) t$ then $\operatorname{Pr}\left[b_{t}^{i}==N O\right] \geq \frac{1}{e}+\frac{\epsilon}{2 e}$.
- Lemma
- If $D E>\left(1+\epsilon^{\prime}\right) t$ then $\operatorname{Pr}\left[b_{t}==N O\right] \leq \frac{\delta^{\prime}}{2}$.
- If $D E<\left(1-\epsilon^{\prime}\right) t$ then $\operatorname{Pr}\left[b_{t}==Y E S\right] \leq \frac{\delta^{\prime}}{2}$.
- Lemma
- If $|D E-t|>\epsilon^{\prime} t$ then $\operatorname{Pr}[E R R O R] \leq \delta^{\prime}$.

Counting Distinct Items

- Lemma

For all t such that $|D E-t|>\epsilon^{\prime} t \operatorname{Pr}[E R R O R] \leq \delta$.

- Theorem

Algorithm 1 returns an estimate of DE within $(1 \pm \epsilon)$ with probability $\geq(1-\delta)$.

AMS Sketch for Counting Distinct Element

- Uses pair-wise independent hash function
- Improved space and time complexity
- Worse approximation

```
Algorithm 4 AMS Counting Distinct Items
    Initialize
    \(z \leftarrow 0\)
    End Initialize
    Process \(\left(a_{l}=(j, \nu)\right)\)
    if \(\operatorname{zeros}(h(j))>z\) then
        \(z \leftarrow \operatorname{zeros}(h(j))\)
    end if
    End Process
    Estimate
return \(2^{z+\frac{1}{2}}\)
End Estimate
```


AMS Sketch for Counting Distinct Element

- Define $X_{j}^{r}=1$ if $\operatorname{zeros}(h(j)) \geq r$ and 0 otherwise. Define $Y^{r}=\sum_{j} X_{j}^{r}$.
- Lemma
- $\mathrm{E}\left[X_{j}^{r}\right]=\frac{1}{2^{r}}$
- $\mathrm{E}\left[Y^{r}\right]=\frac{D E}{2^{r}}$
- $\operatorname{Var}\left[Y^{r}\right] \leq \frac{1}{2^{r}}$
- Lemma
- Consider the largest level a such that $2^{a+\frac{1}{2}}<\frac{D E}{3}$. $\operatorname{Pr}[z \leq a]<\frac{\sqrt{2}}{3}$.
- Consider the smallest level b such that $2^{b+\frac{1}{2}}>3 D E$. $\operatorname{Pr}[z \geq b]<\frac{\sqrt{2}}{3}$.
- $\operatorname{Pr}\left[\frac{D E}{3}<2^{z+\frac{1}{2}}<3 D E\right] \geq 1-\frac{2 \sqrt{2}}{3}$.

AMS Sketch for Counting Distinct Element

- Boosting the confidence Median Trick. Keep $C \log \frac{1}{\delta}$ copies and return the median estimate
- Theorem

There exists a randomized algorithm that returns an estimate of $D E$ satisfying $\operatorname{Pr}\left[\frac{D E}{3}<2^{z+\frac{1}{2}}<3 D E\right] \geq 1-\delta$ using space $O\left(\log \frac{1}{\delta} \log n\right)$

