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Heavy Hitter

» Heavy Hitter Problem: For 0 < ¢ < ¢ < 1 find a set of
elements S including all i such that f; > ¢m and there is no
element in S with frequency < (¢ — €)m.

» Count-Min sketch guarantees: f; < 1?, < f; + em with
probability > 1 — § in space ¢ log ﬁ.

> Insert only: Maintain a min-heap of size k = ﬁ when an
item arrives estimate frequency and if above ¢m include it in
the heap. If heap size more than k, discard the minimum
frequency element in the heap.



Heavy Hitter

» Turnstile model:

» Maintain dyadic intervals over binary search tree and maintain
log n count-min sketch with using space ¢ log 52(:;2) one for
each level.

> At every level at most é heavy hitters.

» Estimate frequency of children of the heavy hitter nodes until
leaf-level is reached.

» Return all the leaves with estimated frequency above ¢m.

» Analysis
» At most ﬁ nodes at every level is examined.
» Each true frequency > (¢ — €)m with probability at least

o(¢—¢)
1- 2logn *

» By union bound all true frequencies are above (¢ — €)m with
probability at least 1 — 6.




I, frequency estimation

> |fi — fi| < +e f2 + £2 + ....f2 [Count-sketch]

» How do we estimate F, in small space ?



AMS-F, Estimation

» H={h:[n] - {+1,—1}} four-wise independent hash
functions
» Maintain Z; = Z; + ahj(i) on arrival of (i, a) for

j=1..,t=5

€

_1xt 2
» Return Y = ;> | Z;



Analysis

v

Zj = 31 fiby(7)
E[Zj] =0, E[z2]
Var[Z7] = E[Z}] - [ )2 < 4F3.

E[Y] = Fo. Var[Y] = 3 S0, Var(Z?) = *< 3
By Chebyshev Inequality Pr[|Y — E[Y]| > ef,] < %

v

v

v
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Boosting by Median

> Keep Y1, Y2,...Ys, s = O(log 16)
» Return A = median(Yi, Ya,.., Ys)
» By Chernoff bound Pr[|A — F,| > eF,] <6



Linear Sketch

» Algorithm maintains a linear sketch [Z;, 25, ...., Zt]x = Rx
where R is a t x n random matrix with entries {41, —1}.

> Use Y = ||Rx|[3 to estimate ¢||x[3. t = O(%).

» Streaming algorithm operating in the sketch model can be
viewed as dimensionality reduction technique.



Dimensionality Reduction

» Streaming algorithm operating in the sketch model can be
viewed as dimensionality reduction technique.

» stream S: point in n dimensional space, want to compute h(S)
» sketch operator can be viewed as an approximate embedding
of 1§ to sketch space C such that
1. Each point in C can be described using only small number
(say m) of numbers so C C R™ and
2. value of h(S) is approximately equal to F(C(S)).

> F(yl7 YQ, Yt) = median(Yl, YQ, oy Yt)



Dimensionality Reduction

> F(Yl, YQ, Yt) = median(Yl, YQ, .oy Yt)

» Disadvantage: F is not a norm—performing any nontrivial
operations in the sketch space (e.g. clustering, similarity
search, regression etc.) becomes difficult.

» Can we embed from /7 to /57, m << n approximately
preserving the distance ? Johnson-Lindenstrauss Lemma



Interlude to Normal Distribution

Normal distribution A(0,1):
» Range (—o0,0)
> Density f(x) = e /v/2x
» Mean=0, Variance=1
Basic facts

» If X and Y are independent random variables with normal
distribution then so is X + Y

» If X and Y are independent with mean 0 then
E[[X + Y]?] = E[X?] + E[Y?]
> E[CX} = cE[X},Var[cX] = c2Var[X]



A Different Linear Sketch

Instead of +1 let r; be a i.i.d. random variable from N(0, 1).

» Consider Z =), rix;

> E[Z2] =E[(>; r,-x,-)2] => E[riz]x,-2 = Z,-Var[r,-]x,-2 =
>ixi = |Ix|.

» As before we maintain Z = [Z3, 25, ..., Z¢] and define
Y =1Z|]3

> E[Y] = t|Ix|

» We show that there exists constant C > 0 s.t. for small
enough € > 0

Pr(|Y — t]|x|3] > et||x[[3] < e=€F (JL lemma)

> sett= O(ei2 log 5)



Johnson Lindenstrauss Lemma

Lemma
For any 0 < epsilon < 1 and any integer m, let t be a positive

integer such that
4Inm

€2/2+€3/3

Then for any set VV of m points in R", there is a map f : R" — R!
such that for all u and v € V,

t>

(L= )lfu—vIB < [[f(u) = F(V)I[5 < (L +€)lJu— v]3.

Furthermore this map can be found in randomized polynomial time.
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