CMPSCI 711: More Advanced Algorithms

 Section 1-3: Count-Min Sketch and ApplicationsAndrew McGregor

Last Compiled: April 29, 2012

Point Queries etc.

- Stream: m elements from universe $[n]=\{1,2, \ldots, n\}$, e.g.,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=\langle 3,5,103,17,5,4, \ldots, 1\rangle
$$

and let f_{i} be the frequency of i in the stream.

- Problems:
- Point Query: For $i \in[n]$, estimate f_{i}
- Range Query: For $i, j \in[n]$, estimate $f_{i}+f_{i+1}+\ldots+f_{j}$
- Quantile Query: For $\phi \in[0,1]$ find j with $f_{1}+\ldots+f_{j} \approx \phi m$
- Heavy Hitter Problem: For $\phi \in[0,1]$, find all i with $f_{i} \geq \phi m$.

Count-Min Sketch

- Let $H_{1}, \ldots, H_{d}:[n] \rightarrow[w]$ be 2 -wise independent functions.
- As we observe the stream, we maintain $d \cdot w$ counters where

$$
c_{i, j}=\text { number of elements } e \text { in the stream with } H_{i}(e)=j
$$

- For any $x, c_{i, H_{i}(x)}$ is an over-estimate for f_{x} and so,

$$
f_{x} \leq \tilde{f}_{x}=\min \left(c_{1, H_{1}(x)}, \ldots, c_{d, H_{d}(x)}\right)
$$

- If $w=2 / \epsilon$ and $d=\log _{2} \delta^{-1}$ then,

$$
\mathbb{P}\left[f_{x} \leq \tilde{f}_{x} \leq f_{x}+\epsilon m\right] \geq 1-\delta .
$$

Count-Min Sketch Analysis (a)

- Define random variables Z_{1}, \ldots, Z_{k} such that $c_{i, H_{i}(x)}=f_{x}+Z_{i}$, i.e.,

$$
Z_{i}=\sum_{y \neq x: H_{i}(y)=H_{i}(x)} f_{y}
$$

- Define $X_{i, y}=1$ if $H_{i}(y)=H_{i}(x)$ and 0 otherwise. Then,

$$
Z_{i}=\sum_{y \neq x} f_{y} X_{i, y}
$$

- By 2-wise independence,

$$
\mathbb{E}\left[Z_{i}\right]=\sum_{y \neq x} f_{y} \mathbb{E}\left[X_{i, y}\right]=\sum_{y \neq x} f_{y} \mathbb{P}\left[H_{i}(y)=H_{i}(x)\right] \leq m / w
$$

- By Markov inequality,

$$
\mathbb{P}\left[Z_{i} \geq \epsilon m\right] \leq 1 /(w \epsilon)=1 / 2
$$

Count-Min Sketch Analysis (b)

- Since each Z_{i} is independent

$$
\mathbb{P}\left[Z_{i} \geq \epsilon m \text { for all } 1 \leq i \leq d\right] \leq(1 / 2)^{d}=\delta
$$

- Therefore, with probability $1-\delta$ there exists an j such that

$$
Z_{j} \leq \epsilon m
$$

- Therefore,

$$
\begin{aligned}
\tilde{f}_{x} & =\min \left(c_{1, H_{1}(x)}, \ldots, c_{j, H_{j}(x)}, \ldots, c_{d, H_{d}(x)}\right) \\
& =\min \left(f_{x}+Z_{1}, \ldots, f_{x}+Z_{j}, \ldots, f_{x}+Z_{d}\right) \leq f_{x}+\epsilon m
\end{aligned}
$$

Theorem
We can find an estimate \tilde{f}_{x} for f_{x} that satisfies,

$$
f_{x} \leq \tilde{f}_{x} \leq f_{x}+\epsilon m
$$

with probability $1-\delta$ while only using $O\left(\epsilon^{-1} \log \delta^{-1}\right)$ memory.

Outline

Applications: Range Queries etc.

Variants

Dyadic Intervals

- Define $\lg n$ partitions of $[n]$

$$
\begin{aligned}
\mathcal{I}_{0} & =\{1,2,3,4,5,6,7,8, \ldots\} \\
\mathcal{I}_{1} & =\{\{1,2\},\{3,4\},\{5,6\},\{7,8\}, \ldots\} \\
\mathcal{I}_{2} & =\{\{1,2,3,4\},\{5,6,7,8\}, \ldots\} \\
\mathcal{I}_{3} & =\{\{1,2,3,4,5,6,7,8\}, \ldots\} \\
\vdots & \vdots \vdots \\
\mathcal{I}_{\lg n} & =\{\{1,2,3,4,5,6,7,8, \ldots, n\}\}
\end{aligned}
$$

- Exercise: Any interval $[i, j]$ can be written as the union of $\leq 2 \lg n$ of the above intervals. E.g., for $n=256$,
$[48,107]=[48,48] \cup[49,64] \cup[65,96] \cup[97,104] \cup[105,106] \cup[107,107]$
Call such a decomposition, the canonical decomposition.

Range Queries and Quantiles

- Range Query: For $1 \leq i \leq j \leq n$, estimate $f_{[i, j]}=f_{i}+f_{i+1}+\ldots+f_{j}$
- Approximate Median: Find j such that

$$
\begin{aligned}
f_{1}+\ldots+f_{j} & \geq m / 2-\epsilon m \quad \text { and } \\
f_{1}+\ldots+f_{j-1} & \leq m / 2+\epsilon m
\end{aligned}
$$

Can approximate median via binary search of range queries.

- Algorithm:

1. Construct $\lg n$ Count-Min sketches, one for each \mathcal{I}_{i} such that for any $I \in \mathcal{I}_{i}$ we have an estimate \tilde{f}_{l} for f_{l} such that

$$
\mathbb{P}\left[f_{l} \leq \tilde{f}_{l} \leq f_{l}+\epsilon m\right] \geq 1-\delta .
$$

2. To estimate $[i, j]$, let $I_{1} \cup I_{2} \cup \ldots \cup I_{k}$ be canonical decomposition. Set

$$
\tilde{f}_{l, j]}=\tilde{f}_{l_{1}}+\ldots+\tilde{f}_{l k}
$$

3. Hence, $\mathbb{P}\left[f_{[i, j]} \leq \tilde{f}_{[i, j]} \leq 2 \epsilon m \lg n\right] \geq 1-2 \delta \lg n$.

Heavy Hitters

- Heavy Hitter Problem: For $0<\epsilon<\phi<1$, find a set of elements S including all i with $f_{i} \geq \phi m$ but no elements j with $f_{j} \leq(\phi-\epsilon) m$.
- Algorithm:
- Consider a binary tree whose leaves are [n] and associate internal nodes with intervals corresponding to descendent leaves.
- Compute Count-Min sketches for each \mathcal{I}_{i}.
- Going level-by-level from root, mark children I of marked nodes if

$$
\tilde{f}_{l} \geq \phi m
$$

- Return all marked leaves.
- Can find heavy-hitters in $O\left(\phi^{-1} \log n\right)$ steps of post-processing.

Outline

Applications: Range Queries etc.

Variants

CR-Precis: Count-Min with deterministic Hash functions

- Define t functions $H_{i}(x)=x \bmod p_{i}$ where p_{i} is i-th prime number.
- Maintain $c_{i, j}$ as before.
- Define z_{1}, \ldots, z_{t} such that $c_{i, H_{i}(x)}=f_{x}+z_{i}$, i.e.,

$$
z_{i}=\sum_{y \neq x: H_{i}(y)=H_{i}(x)} f_{y}
$$

- Claim: For any $y \neq x, H_{j}(y)=H_{j}(x)$ for at most $\lg n$ primes p_{j}.
- Therefore $\sum_{i} z_{t}=m \lg n$ and hence,

$$
\tilde{f}_{x}=\min \left(c_{1, H_{1}(x)}, \ldots, c_{t, H_{t}(x)}\right)=\min \left(f_{x}+z_{1}, \ldots, f_{x}+z_{t}\right)=f_{x}+\frac{m \lg n}{t}
$$

- Setting $t=(\lg n) / \epsilon$ suffices for $f_{x} \leq \tilde{f}_{x} \leq f_{x}+\epsilon m$.
- Requires keeping $t p_{t}=O\left(\epsilon^{-2}\right.$ polylog $\left.n\right)$ counters.

Count-Sketch: Count-Min with a Twist

- In addition to $H_{i}:[n] \rightarrow[w]$, use hash functions $r_{i}:[n] \rightarrow\{-1,1\}$.
- Compute $c_{i, j}=\sum_{x: H_{i}(x)=j} r_{i}(x) f_{x}$.
- Estimate $\hat{f}_{x}=$ median $\left(r_{1}(x) c_{1, H_{1}(x)}, \ldots, r_{d}(x) c_{d, H_{1}(x)}\right)$
- Analysis:
- Lemma: $\mathbb{E}\left[r_{i}(x) c_{i, H_{i}(x)}\right]=f_{x}$
- Lemma: $\mathbb{V}\left[r_{i}(x) c_{i, H_{i}(x)}\right] \leq F_{2} / w$
- Chebychev: For $w=3 / \epsilon^{2}$,

$$
\mathbb{P}\left[\left|f_{x}-r_{i}(x) c_{i, H_{i}(x)}\right| \geq \epsilon \sqrt{F_{2}}\right] \leq \frac{F_{2}}{\epsilon^{2} w F_{2}}=1 / 3
$$

- Chernoff: With $d=O\left(\log \delta^{-1}\right)$ hash functions,

$$
\mathbb{P}\left[\left|f_{x}-\hat{f}_{x}\right| \geq \epsilon \sqrt{F_{2}}\right] \leq 1-\delta
$$

Count-Sketch Analysis

- Fix x and i. Let $X_{y}=I[H(x)=H(y)]$ and so

$$
r(x) c_{H(x)}=\sum_{y} r(x) r(y) f_{y} X_{y}
$$

- Expectation:

$$
\mathbb{E}\left[r(x) c_{H(x)}\right]=\mathbb{E}\left[f_{x}+\sum_{y \neq x} r(x) r(y) f_{y} X_{y}\right]=f_{x}
$$

- Variance:

$$
\begin{aligned}
\mathbb{V}\left[r(x) c_{H(x)}\right] & \leq \mathbb{E}\left[\left(\sum_{y} r(x) r(y) f_{y} X_{y}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{y} f_{y}^{2} X_{y}^{2}+\sum_{y \neq z} f_{y} f_{z} r(y) r(z) X_{y} X_{z}\right] \\
& =F_{2} / w
\end{aligned}
$$

