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Need to ensure quality of data 

Challenges of Big Data 
 
•VOLUME 

—Large amount of data 

•VELOCITY 
—Needs to be analyzed quickly 

•VARIETY 
—Different types of structured and 
unstructured data 

•VERACITY 
—Low quality data, inconsistencies 



This course 

• Develop algorithms to deal with such data 

– Emphasis on different models for processing data 

– Common techniques and fundamental paradigm 

• Style: algorithmic/theoretical 

– Background in basic algorithms and probability 

• However 

– Important problems and practical solutions (mostly) 

– Applied projects are OK and encouraged (more discussions to follow) 



Grading 

• Scribing once: 20% 
• Participation (class and blog): 20%  

– http://csci8980bigdataalgo.wordpress.com/: all information, lecture notes will be posted 
there 

– Add references 
– Add datasets 
– Write posts on interesting articles  
– Discuss questions from the lecture 

• Project: 60% 
– Survey: 30% 

• Read ~5 papers (~2 for background+~3 recent developments) 
• Out of class presentation/discussion 

– Project presentation+ Write-up: 30% 
• Goal to have a project worthy of publication in a good conference in theory/ data bases/ data 

mining. 

• NO EXAMS 

 

http://csci8980bigdataalgo.wordpress.com/
http://csci8980bigdataalgo.wordpress.com/


Timeline 

• Scribe notes 
– Due before next class. Template will be provided. 

• Oct 3rd : submit names of 5 survey papers 
– Encouraged to consult with me before 

• Oct 17th: project proposal due 
– Max 2 pages + references 

– Must be in latex, single column, article 11 pt. 

• Nov 14th : a one page write-up describing progress on project due 

• Dec 5th: project final write-up due 

–  At most 10 pages in latex + references+ appendix (if required to include 
omitted proofs/experiments) 

– Introduction with motivation + related works+ technical part + 
experimental section 

 



Office Hours 

• By appointment: Friday 1pm to 5pm 
– Send email to fix a time 

• Email: barna@research.att.com, barna.cs@gmail.com 

• Where: 6-198 KHKH 

• Encouraged to discuss the progress on projects with me throughout 
the semester 

 

 

mailto:barna@research.att.com


Tentative Syllabus 

• Models 
– Small memory algorithms 

– External memory algorithms 

– Distributed algorithms (Map Reduce) 

– Crowdsourcing (People assisted computing) 

• Focus: Efficiency vs Quality 
– Near linear time algorithm design 

– Incremental and update efficient algorithm design 

– Sub-linear algorithm design / property testing 

– Sparse transformation 

– Dimensionality reduction 

– Metric embedding 



Tentative Course Plan 
• Sept 5th                  Overview, Introduction to Data Streaming 

• Sept 12th 
• Sept 19th 
• Sept 26th 
• Oct 3rd                             Semi-streaming and External Memory Algorithms 

• Oct 10th 
• Oct  17th 
• Oct 24th                  Property testing  

• Oct 31st                           Sparse transformation or near-linear time algorithm design 

• Nov 7th                             Metric embedding 

• Nov 14th                          Crowdsourcing 

• Nov 21st                  Project Presentation 

• Nov 28th                          Thanksgiving break 

• Dec 5th                    Project Presentation 

 
 
 

Streaming: Sketching + Sampling, Dimensionality Reduction  

Map Reduce Algorithms 



Plan for this lecture 

• 1st half: Overview of the course topics 

• 2nd half: Introduction to Data Streaming 



Models 

• Different models need different algorithms for the same problem 

– Default: Main Memory Model 

– External Memory Model 

– Streaming Model 

– MapReduce 

– Crowdsourcing 

1. Do you have enough main memory ? 
 
2. How much disk I/O are you performing ? 
 
3. Is your data changing fast ? 
 
4. Can you distribute your data to multiple 
servers for fast processing ? 
 
5. Is your data ambiguous that it needs 
human power to process ? 



Counting Distinct Elements 

 
    Given  a sequence A= a1, a2, …, am where ai ∊ {1…n}, compute 

the number of distinct elements in A (denoted by |A|). 

 
• Natural and popular statistics, eg. 

– Given the list of transactions, compute the number of different 
customers (i.e. credit card numbers) 

– What is the size of the web vocabulary ? 
 

 
           Example:  4 5 5 1 7 6 1 2 4  4 4 3 6 6  
          distinct elements=7   



Counting Distinct Elements 

• Default model: Random Access Main Memory Model 

• Maintain an array of size n: B*1,…,n+—initially set to all “0” 

• If item “i” arrives set B*i]=1 

• Count the number of “1”s in B 

  



Counting Distinct Elements 

• Default model: Random Access Memory Model 

• Maintain an array of size n: B*1,…,n+—initially set to all “0” 

• If item “i” arrives set B*i]=1 

• Count the number of “1”s in B 

  

  O(m) running time  
  Requires random access to B ( ? ) 
  Requires space n even though the 
number of distinct elements is small 
or m < n –domain may be much larger 



Counting Distinct Elements 

• Default model: Random Access Memory Model 

• Initialize count=0, an array of lists B*1….O(m)+ and a hash function h 
: ,1….n-  ,1…O(m)- 

• For each ai 

– Compute   j=h(ai) 

– Check if ai  occurs in the list pointed to by B[j] 

– If not, count=count+1 and add ai  to the list 

• Return count 
 

Assuming that h(.) is random enough, running time is O(m), space usage O(m). 

PROVE IT !  

     Space is still O(m)  

     Random access to B for each input 



Counting Distinct Elements 

• External Memory Model 

– M units of main memory 

– Input size m, m >> M 

– Data is stored on disk: 

• Space divided into blocks, each of size B <=M 

• Transferring one block of data into the main memory takes unit 
time 

– Main memory operations for free but disk I/O is costly 

– Goal is to reduce number of disk I/O 

 



Distinct Elements in External Memory 

• Sorting in external memory 

• External Merge sort 
– Split the data into M/B segments 

– Recursively sort each segment 

– Merge the segments using m/B block accesses 

Example: M/B=3 
 
No of disk I/O/merging= m/B 
 
No of recursion call=logM/B m 
 
Total sorting time=m/B logM/B m 



Distinct Elements in External Memory 

• Sorting in external memory 

• External Merge sort 
– Split the data into M/B segments 

– Recursively sort each segment 

– Merge the segments using m/B block accesses 

Example: M/B=3 
 
No of disk I/O/merging= m/B 
 
No of recursion call=logM/B m 
 
Total sorting time=m/B logM/B m 

4 5 5 1 7 6 1 2 4  4 4 3 6 6  

1 1 2 3 4  4 4 4 5 5 6 6 6 7  

Count=1 
For j=2,…,m 
If aj > aj-1 count=count+1 



Distinct Elements in Streaming Model 

• Streaming Model 

– Data comes in streaming fashion one at a time 

(suppose from CD-ROM or cash-register) 

– M units of main memory, M << m 

– Only one pass over data 
• Data not stored is lost 



Distinct Elements in Streaming Model 

• Suppose you want to know if the number of distinct elements is at 
least “t” 

• Initialize a hash function h:,1,…n-  ,1,…,t- 

• Initialize the answer to NO 

• For each ai: 
– If h(ai) ==1, then set the answer to YES 

 

The algorithm uses only 1 bit of storage ! (not counting the random bits for h) 



Distinct Elements in Streaming Model 

• Suppose you want to know if the number of distinct elements is at least 
“t” 

• Initialize a hash function h:,1,…m-  ,1,…,t- 
• Initialize the answer to NO, count=0 
• For each ai: 

– If h(ai) ==1, then count++ (this run returns YES) 

• Repeat the above procedure for log n different hash functions from the 
family 
– Set YES if count > log n (1-1/e) [Boosting the confidence] 
   
 
The algorithm uses log n bit of storage ! (not counting the random bits for h) 
 
Run log(n) algorithms in parallel using t=2,4,8,…n 
Approximate answers with high probability > 1-1/n 
Space usage O(log 2n) 



Distinct Elements in Streaming Model 

• Suppose you want to know if the number of distinct elements is at least 
“t” 

• Initialize a hash function h:,1,…m-  ,1,…,t- 
• Initialize the answer to NO, count=0 
• For each ai: 

– If h(ai) ==1, then count++ (this run returns YES) 

• Repeat the above procedure for log n different hash functions from the 
family 
– Set YES if count > log n (1-1/e) [Boosting the confidence] 
   
 
The algorithm uses log n bit of storage ! (not counting the random bits for h) 
 
Run log(n) algorithms in parallel using t=2,4,8,…n 
Approximate answers with high probability > 1-1/n 
Space usage O(log 2n) 

Approximation and 
Randomization are essential !  



MapReduce Model 

• Hardware is relatively cheap 

• Plenty of parallel algorithms designed but 

– Parallel programming is hard 

• Threaded programs are difficult to test, debug, synchronization 
issues, more machines mean more breakdown 

• MapReduce makes parallel programming easy 

 



MapReduce Model 

• MapReduce makes parallel programming easy 

– Tracks the jobs and restarts if needed 

– Takes care of data distribution and synchronization 

• But there is no free lunch: 

– Imposes a structure on the data 

– Only allows for certain kind of parallelism 

 



MapReduce Model 

• Data: 
– Represented as <Key, Value> pairs 

• Map: 

– Data   List < Key, Value>  [programmer specified] 

• Shuffle: 

– Aggregate all pairs with the same key [handled by system] 

• Reduce: 

– <Key, List(Value)> <Key, List(Value)> [programmer specified] 

 



Distinct Elements in MapReduce 
• r servers 
• Data 

– [1,a1], [2,a2+,…., *n,am] 

• Map  
– [1,a1], [2,a2+,…., *n,am][1,a1], [1,a2+,…*1,am/r] ,[2,am/r+1+,…., *2,a2m/r+,….,*r,am] 

• Reduce 
– Reducer 1: [1,a1], [1,a2+,…*1,am/r]  [1,a1], [1,a2+,…*1,am/r] ,[1,h()]     generates the hash 

function) 
– Reducer 2: [2,am/r+1], [2,am/r+2+,…*2,a2m/r] [2,am/r+1], [2,am/r+2+,…*2,a2m/r] 
– … 

• Map  
[1,a1], [1,a2+,…*1,am/r] ,[2,am/r+1+,…., *2,a2m/r+,….,*r,am],[1,h()] [1,a1], [1,a2+,…*1,am/r] 

,[2,am/r+1+,…., *2,a2m/r+,….,*r,am+, *1,h()+, *2,h()+, …., *r,h()]  makes multiple copies of the 
hash function for distribution 

• Reduce 
– Reducer 1: [1,a1], [1,a2+,…*1,aN/r] ,[1,h()], create sketch B1, outputs [1,B1] 
– …… 

• Map 
– [1,B1], [2,B2+,….,*r,Br] [1,B1], [1,B2+,….,*1,Br] gathers all the sketches 

• Reduce 
– Reducer1: [1,B1], [1,B2+,….,*1,Br], computes B= B1+B2+…..+Br, , Follows the Streaming 

Algorithm to compute distinct elements from the sketch 

 



Crowdsourcing 

• Incorporating human power for data gathering and computing 

• People still outperform state-of-the-art algorithms for many data 
intensive tasks 

– Typically involve ambiguity, deep understanding of language or context 
or subjective reasoning 



Distinct Elements by Crowdsourcing 

 

 
• Ask for each pair if they are equal 

• Create a graph with each element as node 

• Add an edge between two nodes if the corresponding pairs are 
returned to be equal 

• Return number of connected components 

• Also known as record linkage, entity resolution, deduplication 



Distinct Elements by Crowdsourcing 

 

 

Distinct 
elements=4 



Distinct Elements by Crowdsourcing 

 

 

Distinct 
elements=4 

Too many questions to crowd ! Costly. 
Can we reduce the number of questions ? 



Scalable Algorithm Design 

              

           Is linear time good enough ? 
– Don’t even read the entire data and return 

result !! 

– Hope: do not require exact answer  

Near linear time algorithm 
design 
 
Seemingly best one can do 
since reading data needs 
linear time 



Scalable Algorithm Design 

              

           Is linear time good enough ? 
– Don’t even read the entire data and return 

result !! 

– Hope: do not require exact answer  

Near linear time algorithm 
design 
 
Seemingly best one can do 
since reading data needs 
linear time 

Property Testing 



“In the ballpark” vs. “out of the ballpark” 
tests 

 

 

• Distinguish inputs that have specific property from 
those that are far from having the property 

 

• Benefits: 
– May be the natural question to ask 

– May be just as good when data constantly changing  

– Gives fast sanity check  to rule out very “bad” inputs (i.e., 
restaurant bills) or to decide when expensive processing is 
worth it 



Transactions of 20-30 yr olds Transactions of 30-40 yr olds 

 
 
 

trend change? 

Trend change analysis 

 
  

  



Outbreak of diseases 

• Do two diseases follow similar patterns?   

• Are they correlated with income level or zip code?   

• Are they more prevalent near certain areas? 

 



Is the lottery uniform? 

• New Jersey Pick-k Lottery (k =3,4) 

– Pick k digits in order. 

– 10k possible values. 

• Are all values equally likely to occur ? 
 

 



Global statistical properties: 

• Decisions based on samples of distribution 

 

• Properties: similarities, correlations, 
information content, distribution of data,… 

 

 



Another Example  
Pattern matching on Strings 

• Are two strings similar or not? (number of 
deletions/insertions to change one into the other) 
– Text 
– Website content 
– DNA sequences 

 

ACTGCTGTACTGACT    (length 15) 
 
  
   CATCTGTATTGAT         (length 13) 
    match size =11 



Pattern matching on Strings 

• Previous algorithms using classical techniques 
for computing edit distance on strings of size n 
use at least n2 time 

– For strings of size 1000, this is 1,000,000 

– Can you compute edit distance in near linear time ? 

– Can you test whether two strings have edit distance 
below c (small) or above c’ (big) in sub-linear time ? 



Pattern matching on Strings 

• Previous algorithms using classical techniques 
for computing edit distance on strings of size n 
use at least n2 time 

– For strings of size 1000, this is 1,000,000 

– Can we compute edit distance in near linear time ? 

• Various methods, key is metric embedding 

– Can we test whether two strings have edit distance 
below c (small) or above c’ (big) in sub-linear time ? 

• Property testing 



Metric Embedding 

• Metric space is a pair (X, d) where X is a set and d: X x X*0,∞+ is a 
metric satisfying  

  i.) d(x,y)=0 if and only if x=y 

              ii.) d(x,y)=d(y,x) 

             iii.) d(x,y)+d(y,z) >= d(x,z) 

Dissimilarity matrix for bacterial 
strain in microbiology 

x1 x2                                          xn 

x1 

x2 

xn 

f: X  R2 

 

d(xa, xb)=d(f(xa), f(xb)) 

1.) succinct representation 
2.) easy to understand structure  
3.) efficient algorithms 



Metric Embedding 

• Metric space is a pair (X, d) where X is a set and d: X x X*0,∞+ is a 
metric satisfying  

  i.) d(x,y)=0 if and only if x=y 

              ii.) d(x,y)=d(y,x) 

             iii.) d(x,y)+d(y,z) >= d(x,z) 

Dissimilarity matrix for bacterial 
strain in microbiology 

x1 x2                                          xn 

x1 

x2 

xn 

   f: X  R2 

 

  d(xa, xb)=d(f(xa), f(xb)) 

1.) succinct representation 
2.) easy to understand structure  
3.) efficient algorithms 

Isometric Embedding 



Metric Embedding 

• C-embedding: Embedding with distortion 

 

 

 

 

• Example 
– General n-point metric  Tree metric  C=O(log n) 

– Specific metrics  normed space : edit distance (Levenshtein distance to low 
dimensional l1) 

– Graphs  t-spanner C=t 

– High dimensional spaces  low dimensional spaces : Johnson-Lindenstrauss 
theorem: flattening in l2 ,C=(1+epsilon) [Dimensionality Reduction] 

    f: X  X’, (X,d) and (X,d’) are metric 

 

∃ r ∊ (0,∞ ) s.t  r d(xa, xb)  <=d(f(xa), f(xb))<= C r d(xa, xb) 

Distortion=C 



Sparse Transformation 

• Sparse Fourier Transform 

• Sparse Johnson-Lindenstrauss 
– Fast dimensionality reduction 



• Discrete Fourier Transform: 
– Given: a signal x*1…n] 
– Goal: compute the frequency 

vector x’ where 
x’f = Σt xt e

-2πi tf/n 
       

• Very useful tool: 
– Compression (audio, image, video) 
– Data analysis 
– Feature extraction 
– … 

 
• See SIGMOD’04 tutorial 

“Indexing and Mining Streams” 
by C. Faloutsos 

 

Fourier Transform 

Sampled Audio Data (Time) 

DFT of Audio Samples (Frequency) 



Computing DFT 

• Fast Fourier Transform (FFT) computes 
the frequencies in time O(n log n) 

• But, we can do (much) better if we only 
care about small number k of “dominant 
frequencies” 
– E.g., recover   assume it is k-sparse (only k 

non-zero entries) 

• Exactly k-sparse signals:      O(k log n) 

• Approx. k-sparse signals* : O(k log n * log(n/k)) 

 



Agenda 

• Introduction to Data Streaming Model 

• Finding Frequent Items Deterministically 

• Lower bound for deterministic computation for distinct items 

• Interlude to concentration inequality 

• Analysis of counting distinct items algorithms 


